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ON ESTIMATING VARIANCES OF ROBUST
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ABSTRACT

We investigate the effects of asymmetry on estimates of variance of robust

estimator in location and regression problems, showing that heavy skewness of

errors can seriously bias the common variance estimates for location and

intercept, a problem that can be corrected by jackknifing for location but is

more intractable for the intercept in regression. The scale parameters in

regression seem not to be as seriously subject to this bias if the sample size

is large compared to the number of parameters.
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Introduction

The theoretical results and Monte-Carlo studies in the area of robustness

have in the main focused on symmetric distribut ions (Andrews , et al (1972)) or

procedures which are not scaleequivariant(which effectively eliminates most

problems due to asymmetry when the number of dimensions in the problem is

fixed). Recently) Huber (1973) and Bickel (1978) have examined situations in

which the asymmetry of errors can lead to quite complicated results. In this

paper we study the effects of asymmetric errors in two very simple situations:

(one and two dimensional) location problems and simple l inear regression . We

have focused our attention on estimating the variability of robust point

estimators in these problems .

A major difficulty with considering asymmetric errors has been that location

(intercept) is not uniquely defined . h owever, asymmetric dat a do occur and there

are situat ions where datatransformations to achieve symmetry either make no

sense or are not possible. In regression, it might be conjectured that asym-

metry has different effects on intercept and slope (see Section 3); if  so ,

there will he situations where one might invest much effort in data transforma-

tions , when the parameters of interest are not influenced by the asymmetry .

This alone seems a good reason for studying asymmetry , but as another example ,

in ranking and selection problems , one is often interested in the stochastic’ally

largest population; robust estimators have been proposed in place of the samp l e’

mean for this problem , and a data transformation which achieves symmet ry for a l l

populations may not be possible.

In Section 2, we study the effects of asymmetry ot’ errors for the

one-dimensional location problem , using M-estimates, trimmed means , and an

adaptive trimmed mean due to Hogg (1914). In SectIon 3, we study N-est imates of

regression. Our major qualitative conclus ions are as follows:
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(1) The published estimates of variance for M-estiinates of location will . ¶
be consistently small if the errors are heavily skewed. This problem appears
amenable to solution if a variance estimate suggested by jackknifing is used .

(2) In linear regression, a similar conclusion holds true for the inter-
cept . Theoretical and Monte-Carlo results show that slope parameters are
influenced only negligibly by skewness. Jackknifing for the intercept does not
work as well here, with the variance estimates now being slightly too large.

(3) In the two-sample problem with equal scales, a robust test statistic
can be constructed with a consistent variance estimtate , even if the errors are
asymmetric. This statistic, however , has unknown sensitivity to heteroscedasti-
city of variances.

Location Estimates

In this section we define the location estimates used in the study , state

two Lemmas and give a discussion of expected results. An M-estimator is defined

as a solution to the equation

(2.1) 
~~ ~j s((X . - T~)/s~) = 0,

where s is an estimate of scale. In the Monte-Carlo study, we used two func-

tions ~jj defined by

(2.2) 4i(x) = -iJ (-x) = max (-2, min(x,2))

(2. 3) ,)(x) =

= x  O < x < 2 . 2 5

= 2.25 2.25 < x < 3.75

= 2.25 (lS-x)/1l,25 3.75 x < 15

= 0  x > l 5 .

The function (2.2) is referred to as Huber’s ~p, while (2.3) is Hainpel ’s ~~~. The

solutions to (2.1) were generated iteratively (Gross (1977)), starting with the

S
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I
sample median and with two estimates of scale:

(2.4) sin (median absolute residual)/.6745

(2.5) s (new) ~~(n-l)~~ ~ ~~((X. - ~ ~~~~ (o1d))}s~ (oId)/a ,jal

where a ~~~~~~ the expectation taken under the standard normal distribu-
tion function . Two estimates of the variance of n~ T were used, namely

n2(2.6) Dl (i) 11 s ’ (n-I)’’ ~ ~
2((X. -T )/s )/b2 , wherein in j — l

n
b, . n~ ~ ~‘((X -T 

~“~ in~’ 
H = I + n~~(l-b. )/b.j nj=1

n
(2.7)  D

2 
(i) a l.08(n-1Y” ~ w (Y -T )2 wheren ij  j  nj 

~
1

~j(jX.-T )/s. )/((X.-T )/s )ii •1 fl tfl .J n in

We used the factor 1.08 in D
~n

(i) so that the two estimates have approximately

the same value for normal samples in our Monte-Carlo experiment , and we used the

factor H2 in D (1) as suggested by Huber (1973).In

The variance estimates D (i) and D2~(i) are essentially as suggested byin

Gross (1977), the first motivated by the asymptotic variance formula for ~~ In

If t~7 (x)dF(x)/{ f ~,‘(x)dF(x) }

appropriate when F is syimnetric , the second suggested by the weighted least

squares nature of the iterative estimation procedure. In the general case with

possible asyi~ etry , the behavior of M-est imates Tn can he summarized by the

following result , for which exact conditions can be generated from the method

of proof of Theorem 1 of Carroll (l978a). 

— — 
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Lemma 1. Suppose that for some constants ‘l’
1 (F), ~~(F) we have that I 1 (F), . 

-

n~(s1~ 
- ~~(F)) a O U ) ,  and F ~JUX 1 

— T~(F))/~~(F)) 0. Taking T.(F) 0,

‘ (F) • 1 (without toss of generality’ ), for ~, smooth ,

( .5 )  lh = + (1 - s . )E F x 1ç ’ (X
1 ) + O (n~~).

t~~i s c u s s  ton of Lemma 1

Ihe following qualit ative considerations emerge from Lemma 1 and are

ve rit’ted in t he Monte-Carlo experiment .

~I) II’ the distribution function F is not symmetric , t hen, in general ,
~ 0 so that D1~ (i) (which is asymptotically correct in the symmetric

case) wilt typically undert’stimate the true variance. The same shou ld hold for

(2) 11w bias  in D10(i) and rh~~( i )  should be small for distributions which
are’ nearly symmetric because T~ is a smooth function of the data. The bias will
become large as the degree of asymmetry increases.

(3) When s,
fl is used as scale , i,~ should be a particularly smooth function

of I . From Jaeckel (1972), this means that jackknifing will probably he effec-
t i~’ ,’ in estimating the variance of I~ . As pointed out by Huber (1977 , p.2t~

) ,
such a variance estimate will be more appropriate for T~ t han for the jack knifed
version of i~.

We also consider trimmed means and two adaptive versions . Define lJ~ (a)(I~fl
(~

) )

as the mean of the largest (smallest) n~x order statistics. As a measure of tail

length , whe-t~ n~ is an integer (true in the situations considered here), Hogg (1974)

proposed

= (lJ~ ( . 20) — L (  . 0f l /(tJ .50) — L (  .50fl

Then , i t ~ ni~. refer~. to a m~ symmetrical l v  t rimmed mean , the tlogg adapt ive t’~ t imat e

is  ~k’t i ned by

HG! a 5% if Q ‘- 1.81

a 10% if 1.81 ‘
~ Q s. 1.87

= 25% if “ 1.87

~~-=-

—
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The est imate of an nt trimmed mean is given by Shorack (1974) , Huber (1977 ,

cq.(10.4)) has shown that this estimate essentially arises from jackknifing the

nt trimmed mean . Calling this variance a2(M), we define

1

D(Hogg) = ~ (in%) if HG1 nit.

We also consider an estimate suggested by Switzer (1970), defined by

Swit:er m% if o2(m%) is minimum among

2 2
a (5%), a (10%) and a (25%).

If one assumes that n 2 
(Q - Q(F)) has a limit distribution , it is easy to

obtain the following disturbing result , precise conditions for which could be

given but are omitted .

Lemma 2. Suppose Q(F) = 1.81. If F is symmetric about e(F) , then n 2 (HG1 - 0 ( F ) )

has a non-normal l imit distribution . If F is not symmetric , there typically

ex ists no f inite 0 for which n~ (HGl - 6) has a limit distribution .

Sketch of proof. Let T~(m) be the m% symmetrically trimmed mean with

n½(T (m) - 8(m)) having a normal limit distribution . If F is symmetric about

0(F), since is even and T
n(m) is odd , n

½ (T
n
(m) - 0(F)) is asymptotically’

independent of n½ (Q~ - Q(F’i. Define

A
1 

= {Q~ < Q(F)}, A2~ ~~n 
> Q(F)} B 1 = {n’~(HGI - 0(F)) ‘.

A n n  h” ,

_ _ _  I

- -  , _~~~~~~~ - _~~~~~~ - --.-- __________ - —-- ----- ~~-—— ~~~—~~~~~~ —~~~~~~~~~
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P(B 1) P(A1~ B1) + P(A2 B1)

~ P(A 1 and n(T (5) - e(F) ) ‘~ 
z )

+ P(A
2 

and n~ (T (10) - 0 (F ) )  z )

~ (P(n (T (S) - 0(F)) < z )  + P(n~ (T~ ( 1O) - 0( F ) )  < z f l ,

verifying the first part of Lemma 2.  If F is asymmetric and 0(5) ~ 6(10)

(the usual case), for any 0

( 2 . 9 )  P(B1) P(A~~ and n 2(T (5) - 0(5)) < z + n~ (0 - 0( 5) ) )

+ P(A7 and n~ (T (l 0) — 8(10)) < z + n~ (0 - 0( 10)) ) .

Clearly, no 0 can be chosen so that the right hand side of (2.9) is a probability

distribution . 0
Because of Lemma 2 we expect }4G1 to do very poorly in terms of efficiency

and estimating variance if F is asymmetric and Q(F) 1.81. For the negative

exponential distribution , Q(F) 1.805, so particular problems might be expected

here.

The location estimates used in the study we report here are given in Table

1. These represent a portion of the results in a larger study which leads to

the same conclusions.

The Monte-Carlo study used a shuffled congruential random number generator

to obtain the uniform random deviates . The Box-Muller algorithm was used to

obtain the standard normal deviates. Due to time and financial considerations ,

various sample sizes (500 < N < 2000) were used, so that we also report standard

errors.
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TABLE 1

A description of the location estimates used in the study

Code

M Sample Mean

lot iot symmetricall y trimmed mean

IIG1 See tex t

Sw it zer See tex t

Hub 11 Uuber with s and D (1)
ml ni

Hub 22 Iluber with S 2 and D ,(2)

Hamp 12 H ampel w ith S
n! 

and D~,(1)

Ilamp 21 Hampe l with s~2 
and D

ni (2)

Hub IJ Huber jackknife variance estimate with s
in

Hamp lJ Uan~e1 jackkn i fe var iance estima te wit h s
1

Hub 2J Huber jackknife variance estimate with 
~2n

- -“ _
~~ —~ 

_— - —-~~~~~~~
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I c t  be a standard iwrma 1 random variable . While .1 wide range ot sampling

dist rihut ion’~ were investi gated (both symmetr ic and asymmetric ) , the

pr*’scnt ed here are representat Vt ’

N(O . i~

: + .io: . I 0 \ ~

\ i’~ ,,~~t L V i ’  t~ X1)OIlCflt i -~1 , inc~U~ 1.25 NI

.S0 Exp (:)

The ~c~ond L, 10N ) is only- sli g ht l v  skewed and was chosen f r o m  a lat’~ cr  set

os:2 : + .2~:, E\ l’ ( ,io:) , i~\p .25:)) as a i’easonah le representat iv~ ~f

the c lass ~t• d i st r ibut tons c ljse t.~ , hut  not ex ac t ly , svmm c t n c  . Such dat a

mi ght aris e for example from data t rans formations which only ich iev - mr~~x~

imate symmetry .

The sample si:c is ii = 20. if N is the number of ~k)ntt ’— Car1o  L -x~ (r 1mt -:1ts

and , i i . , . . ,  I the rt’a 1 i zeJ value i~f a ltc at ion est imator , the (S t  arid ,i i’d i :ed)

Monte-Carlo variance is

= 
N ~1 ~~~~~ i 

-

The ave rage v , i  I uc of a vat ’  i . t n c e ’ es t imat e ot’ n~~ is Jeno ted by ‘ . 1,ib Ic

presents the va I ut ’s  t t  anti and t he i r st .tThI ,t i’d erro l’s 

~~~~~~~- -~~~~ ~~ ‘ - - - ‘-- ----- - . -. ~ - ~~~-- - --- --- - . -,-- ~~~ -



9

TABLE 2

The first row for each estimator g ives the Monte-Carlo variance ~2 of the

location estimate and the Monte-Carlo average of the appropriate variance

estimate. The second row consists of standard errors .

N(0 , l) .lON 2 .50N 2 NE EXP(Z)
2 -‘2 2 -‘2 2 -‘2 2 ~2 2 -‘2Code a o a a a a a a a a

M 1.03 .99 1.07 1.01 1.50 1.47 1.58 1.55 1.10 1.10
.03 .01 .03 .01 .05 .02 .05 .02 .05 .04

10% 1.09 1.06 1.10 1.07 1.24 1.25 1.31 1.36 .51 .52
.03 .01 .03 .01 .04 .02 .04 .02 .02 .01

Switzer 1,14 .90 1.15 .90 1.57 .93 1.57 1.04 .52 .34
.04 .01 .04 .01 .05 .01 .05 .02 .01 .01

HG1 1.09 .96 1.12 .97 1.75 1.05 1.63 1.16 .58 .38
.03 .01 .04 .01 .05 .02 .05 .02 .01 .01

Hub 11 1.05 1.01 1.06 .99 1.49 1.08 1.50 1.20 .68 .46
.03 .01 .03 .01 .05 .02 .05 .02 .03 .01

Hub 22 1.05 1.02 1.07 1.02 1.54 1.21 1.52 1,31 .68 .56
.03 .01 .03 .01 .05 .02 .05 .02 .03 .01

Ilamp 12 1.04 1,06 1.06 1.07 1.64 1.24 1.54 1.38 .77 .53
.03 .01 .03 .01 .05 .02 .05 .02 .03 .01

[lamp 21 1.05 1.01 1.07 1.00 1.60 1.14 1.54 1.28 .74 .45
.03 .01 .03 .01 .05 .02 .05 .02 .03 .01

Hub 1J 1.05 1.01 1.06 1.02 1.49 1.49 1.50 1.62 .68 .70
.03 .01 .04 .01 .05 .03 .05 .03 .03 .02

Uamp 1J 1.04 1.01 1.06 1.02 1.64 1.53 1.54 1.57 .77 .81
.03 .01 .03 .01 .05 .02 .05 .02 .03 , (~2

h ub 2J 1.05 1.03 1.07 1.05 I.S4 1.61 1,52 1.70 .68 .75
.03 .01 .03 .01 .05 .05 .05 .05 .03 .03

_____________ —--—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——~~~ 
-- -
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~~ ‘cus,’~ou of the results lot’ b eat Ion est imates

• t’ht’ tab l ed l’t’s u Its confirm our earl it’ r speculat ions and might be sununa i’i zt’d

as f o b  Lows:

( I )  Li  s d l t ’t’icu it to t’st m a t  e t he van lamee of either IIG1 or SW ITZ ER.
.1 ac-kk nit ’ t h g  w 11 prohab I>’ Utit help here as the’ est imates are not smoot h
funet j o i ta  I s  of the’ data.

( 2 )  h u t ’ t wo  t’onunonlv used sc- alt ’s (s • s ) lead to s imi la r  r esu lt s .- In 2n

i. ~t (‘itt’ two VU 1 .t tic t’ st  mat c’s D
11 ( i ) a itd 

~~ 
( i ) do q u i t e  w e l l  for N ( 0, 1

and , I ON 2 
• which a t’ t’ s~’mntet r i c or near 1 y so , but are not to he trust i’d lo t’

hcav i lv skewed data. I i t he,’ a jackk nife ’ or t ransformt ions appear necessary

(4 )  ihe j ~tckkni It ’d var lance est imates arc a dramat Ic improvement on
0
~ i ( 1  1 and l)~ I 1) . t h e r e  i s  no simple putt ~‘rn to these figures , but ~t’iie’I’a I l v

the jack kn i I t ’d v at ’  I auc ’e t’st linates appear to become more conservat i ye as we
t r oni N ( O , 1) to l \I’( )

tin ’ opt tin I I c I nit’ t’p i’e ta t  ion g A yen he u’e to the use ot’ t he j ackk u t  It ’ It ’ t’

~ at ’  1 , 1 1 1 c c’ c ’S t i tnat loll lit t’c)htl~~t I t t’5S 01 local  ion cont rasts with that of it raun

I 97h ) , who colic I uidt’d that j uckkni fAng  and robust est imat ion do not get at Olig

Vt ’ t’~ we Ii .iiid that var i aitce i’s t m itt i’s obtained from I at ’ kkn it’ I ng a t~c~ not

re i i  . t I ’  it’ . h u t ’ c lost’~ t he caine to cons i d e r t  it~ our M-est imates was a on e - s tep

N-c ’ s t i nut i t’ ‘~ art i t ig ,t t t hr mcd i au and the median absolute deviations from the

me ct i  .III (MAI’, rs st’ut ta lly our s . We be’! levi’ that our results art’ more

~iv~ r,il’L~’ to the ,ackkni It ’  because the stat  1st ics we have considered are much

“ilk~t ’t ltt ’ I’ tUl ic t t c~~td  is o I
, 
the data then are on e— step M— est m ates start I ng at

tall . MAt)) • ( a  t o l l  ci’ t tir e’ of this type has been made by Gross (10Th))

I l Is t  t’ .uI ot comparing ~
2 and ~~ a s we’ do here , he compared ( i n  t h e ’

ma it) I ug ( 
~~~

‘ ) to log ~~~
“ 

, which is mu t’ c ’ uit st .ih It’ when ~~ ~ I , atti l hc ’c a t i s t ’ 1 ~ \ lUhllt ’ t i v

I ~ IlIl t , t ’. e i i ’ ~ l h ’  I t ’  t c ~ (2 .  u) ~iutcl (2 . ’) . We’ used the’ one--step M—rs t imat c ’ w ith ~ ‘

o l Ve’n ~ (2 ..’) and s t a u t  lug at ( med ian , MAU/ .~~74h) and obtained the table ’

j
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~~~2 ~~~2 NE EX}’W~
1.06 1,08 1,64 1.55 .58

o from (2 .6) .99 .97 ,85 1.04 .33

c~~
’ from jackknife 1.06 1.09 1.90 1.76 .65
n

Thus, for one-step M-estiniates, the jackknife is more unstable than it is with

smoother N-estimates.

Regression

We next Investigate regression to see if similar  phenomena to those found

in the previous sec ti on con tinue . Our in tui tion says tha t , under asymme try ,

the common estimates of variance will be inconsistent for intercept but accep-

table for slope . In this section we sketch a proof confirming this conjecture

and illustrate small sainpieresults with a Monte-Carlo experiment .

The model we consider is (the use of will become clear later)

( 3.1) = x . + c 1 00 (i =

where the are i.i.d. random variables with flqi (c
1 ) = 0 and

x
1 

= ( 1 x~ 1 ... x 1~ ) .  We consider a version of Huber ’s Proposal 2 (Huber

(1977) , p .3 7) , wh ich involves so!ving the equations

(3.2) fl~~ 
~~ 

uj((Y. - x . ~~)/s ) = 0

(3.3) (n - pY~ ~ ip
2
((Y. - x. (~~)/s ) a.

i=l

Whil e we will assume the x. are constants , the first two conditions of Lemma 3

(to follow) are reasonable anti may he justified by quoting results of Maronna

- --~~~~~~~ —-k—
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and Yoha t (1978). In a subset of their paper, they assume (y1,x1), (y2,x2L...

is a sample from a distribution function P with ,~~~ , a0 solving

1i~~((y - x ~0)/a0) = 0

- x B0) / o 0) = a

L)efining c
~~ 

= - 

~i ~o~”°o’ 
they show essentially that if the c~ are inde-

pendent of and if 
~~~~~~

, ~~ satisfy ( 3 . 2 )  and (3.3) (the latter with (n - p)

replaced by n), then n ’~(J~ - 

~~
) and n’~(s~ - a~) are asymptotically normally

distributed .

‘I’he proof of our result involves Taylor expansions along the l ines  of

Carroll (l978a, 1978b) and is omitted to avoid cluttering up the paper with

messy calculations. Recall that our are non-stochastic.

Lemma 3. Suppose that

- ,~~) = O~,(1)

- = 0 ( 1)

n ’X ’ X  -
~ V (positive definite)

~~ 

~ 

x .  (1,0,0,.. .,0) =

‘I’hen , for t~ sufficiently smooth ,

(3.4) (a3V - (a
1
a,~,/a 2)w ’w) (,~~~~ 

-

— n” ~ {x
1’ tL’(c.) - (a 1/a ,)w ’(g ~

2 (c~ ) - a)}
i=l

+ 01,(n”~) .
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where

a1 = E t~1ij~’(c 1) a3

a2 = 2E c~ ~~~~~~ a4 = 2E ~(c 1)t~’(c 1) . F]

In simple linear regression with

1 0
- 0 V

1

we obtain that ~ = 

~~int ’ ~sIope~ 
and = 

~~int ’ ~slope~’ 
then

Corollary. Under the conditions of Lemma 3, for simple linear regression

(3.5) 
~~int 

- 

~int~~
0
0

= (a3 
- (a1a4/a2)~~

’n 1 
~~{~I’(c.) 

- (a
1/a1) (~J2(t- .)  - a)} + 0 ( n ~~)

(3.6) slope ~slope~~ 00 = (a3v1Y~ n~
1 

X 
x~1 ~(c~) + 0~(n

’) .

Similar results hold for the general regression problem .

Discussion of Lemma 3. The following conclusions emerge from Lemma 3 (for

large samples) and are partially confirmed for small samples in the Monte-Carlo

experiment to follow.

(1) It can be shown that the representations (2.8) and (3,5) are equiva-
lent when scale is estimated by 52n ’

(2) The representation (3.6) implies that in large samples , even with
asymmetry

(3.7) 8slope 
- 

~5lope “. Normal (0, ii~Et~
2(r1)/ a v 1) 

---~~ -~~~~~~~~ - •- --~~~~~~~~~~~~-- - -
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which us prec i sely the result obtained by Huber (1973) for known scal e and ~
I’m xed .

1,3’, l’hus , l’or fixed p as n becomes large , the asymptotic variance
•“- ,!~~ for ~ obtained in the syt~ etric ease with known scale are correct in

gen e r a l  e~ cep t~~when applied to tho intercept . We expect to experience the same
d i f f i cu l t y  in es timat ing the variance of the intercept that we found in the
previous Sect ton.

(4) For estimat ing the’ variance of’ the intercept , the equat ion (3.~~)
shows that ,~ us sufficiently smooth for jackknifing .

S lope’

We co nstructed a Monte-Carlo experiment t’or ii = 20 in the s imple l inear

regression model

= 1 + x~ + t . ,

where the v a l u e s o f’ ~ ,ire - ,95, - .90 90,.95 and the error distributions

were :ls in the’ previous sect ion. There were N=2000 iterations for least

squares and t he (tuber estimate , and N r 1 2 0 0  iterations for the jackknife . in

(able 2 we present the values of ~~~~ for ~~ and ~~ us ing l eas t  squares ,n slope ~nt

the Iluher Proposal 2 with c (~~
) = max(-2 , m in( x ,2 )) and the ja ckknift ’d variance

est m a te  for  the iluber Proposal 2. (‘bc’ estimate of variance used is essi’nt jail)’

and i f r. = (y
~ 

— x ,

-l0ln t2
~ 

= hh ~ (n-p) ~, (r~)/b . where
.j=l

n
= n”1 

~ 
p’ (r.), ~ = I + p (I-b)/(hn).

j= l

In Tabl e 3 we present the average values i~ anti l~
, for both leas t

slope tnt

squares and Proposal 2. We conclude

~ 4 
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(1) The slope estimate ‘
~s l ope is hardly infl uenced by even large dosages

of asymme try.  It appears relativel y unbiased and its variance can be assessed
relatively accurately. In separate Monte-Carlo experiments , we have found that
this phenomena extends to a quadratic regression with uniform design (n=30) and
to the poison-treatment 3x4 design of Box and Cox (1964).

(2) The intercept estimate 
~int 

is influenced by asymmetry and standard
variance formulas will tend to underestimate the true variance (in asymmetric
cases) even more than will happen in least squares .

(3) The jackknife appears to be conservative , more so than in the location
case. Hinkley (1977) shows that the jackknife as employed here (the so-called
balanced jackknife) leads in general to a biased variance estimate even in least
squares, unless the design is balanced . In his example , the design is much less
balanced than ours and the behavior of the balanced jackknife much worse.
Fur ther st udy of his “weighted” jackknife appears necessary, although for this
par ti cular  design , our unreported simulation results for the weighted jackknife
are virtually identical to those given here for the usual jackknife .

(4) Consider a two-sample location problem

Y
ji 

= IJi + ( ..  (j = 1 ,2 i =

The results of the previous section show that a statistic formed by analogy
with the t-statistic (X rep laced by Tfl (X 1I ..., Xn),etc.) will tend to have a
higher type I error than advertised . However, define

~ ~2~~o = n1~t 1 + n~p’,, (ti 1 + n2)1~1 = n2(l,11 - P2) , and

= 
~
‘
il 1 i = 1 ,..

zi = ~~~~~~ x~ = -n1/n 2 = n
i 

+ 1 ,.. .,n ,

Then we have the l inear model and , by estimating scale simultaneously through
(3.2) and (3.3), Lemma 3 and Corollary 1 tell us that we can consistently
estimate the variance of the estimate of 

~l 
- 

~12 and hence obtain proper tests.This of course leads to the usual t-statistic if tp(x) = x.

-- -- - - - 
- -~
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TABLE 2

The entries are the ratio ~~~/O for the appropriate estimates and sampling
Situat ions .

1s t m a t  ion 
‘ ‘

Method Distribut iun

2

Sm t slope m t  slope m t  slope m t  slope m t  slope

Least Squares .98 .98 .96 .98 .98 .99 .99 1.00 1.00 l. Ov

lluher .95 .98 .93 .98 .75 .96 .83 .99 .b9 .94

Jackkn i f ed
Iluber 1.02 1.06 — — 1.07 1.11 — — 1 .1 ) 1. 1 - 1

TABLfl 3

The entries are the average values of the parameters over the sampling situati ons.

The t rue va lu es are = 1.00, 
~slope 

.50.

N(0,I) . 1 ON” .50N2 NE E XP ( )
Least Squares 1.00 1,05 1.00 1.00 1.00

~~ (east Squares .49 .49 .48 .48 .48s lope ,

Huber 1.00 .99 .92 .94 .90tnt

lluber .49 .49 .49 .48 .50slope

- 
- - 

_________ _ _ _
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